The Smithsonian Tropical Research Institute and Panama’s Ministry of the Environment (MiAmbiente) Participate in Frog Release Trials in Eastern Panama as Part of the Implementation of the Action Plan for the Conservation of Amphibians in Panama

Scientists from the Smithsonian Tropical Research Institute (STRI) and officials from Panama’s Ministry of the Environment (MiAmbiente) visited the Mamoní Valley Reserve, where release trials are underway to release Limosa Harlequin (Atelopus limosus) frogs. These frogs were bred in captivity and are the descendants of frogs collected a few years ago in the same area.

MiAmbiente was represented by biologists Erick Núñez and Anthony Vega, technicians from the Department of Biodiversity of the Office of Protected Areas and Wildlife. They were accompanied by STRI staff scientist Roberto Ibáñez, director of the Panama Amphibian Rescue and Conservation Project (PARC), and Juan Maté, STRI’s manager for scientific affairs and operations and institutional liaison with MiAmbiente. PhD student at the Smithsonian-Mason School of Conservation at George Mason University, Blake Klocke, who is currently conducting this research, hosted and guided this visit, together with his field assistant, Mirjana Mataya.

Some of the frogs are from the initial release trial conducted in the El Valle del Mammoní Reserve by Panamanian PhD students from Virginia Tech, Daniel Medina and Angie Estrada. They kept the frogs inside enclosures in this reserve to protect them from predators and so that they could obtain samples to determine if they were infected by the chrytrid fungus (Batrachochytrium dendrobatidis). In a second release trial, Blake Klocke freed these and additional frogs. In this phase of the investigation, one of the objectives is to determine if it is necessary to keep in enclosures before releasing them completely. Some of the frogs were equipped with radio transmitters that allow researchers to follow their movements and estimate the size of their territories.

The visit with MiAmbiente officials was aimed at monitoring the release trials and the progress of research. Blake Klocke showed them how the radio-telemetry tracking system works using mini-transistors. This technological tool, applied to scientific research, allows us to follow the movements of these small frogs. Frogs without radio transmitters were certainly harder to observe. Likewise, measurements of the size and weight of frogs were obtained and samples of their skin were collected with swabs for detection of the chytrid fungus. At this point, the frogs have been kept close to the point of release. However, based on the data being collected, researchers will be able to estimate the future dispersion and survival of the frogs.

The initiative to advance the release trials is part of the Panama Amphibian Rescue and Conservation Project, known colloquially as PARC and administered by the Smithsonian Tropical Research Institute under the supervision of MiAmbiente. This project is a collaboration among several organizations including Cheyenne Mountain Zoo, Houston Zoo, Smithsonian National Zoological Park and New England Zoo. It has been supported by a long list of sponsors, among them Minera Panama SA.
PARC has two facilities, one at El Níspero Zoo in El Valle de Antón, Coclé, now known as PARC El Valle and the other in Gamboa in the Panama Canal Watershed, known as PARC Gamboa. The PARC El Valle facility received the first rescued frogs, which had been temporarily kept at the Hotel Campestre in 2007, an initiative of the El Nispero Zoo and the Houston Zoo, with funding from the latter as an emergency response to the reduction in numbers of amphibians due to the mortality caused when the fungus arrived in El Valle de Antón in 2006. In 2009, this facility in El Valle came under the umbrella of the PARC project, and has continued its operation within the El Níspero Zoo. In addition, in 2009, PARC Gamboa initially began with the building of facilities at Summit Municipal Park, before relocating to its current location in Gamboa in 2012 to improve and expand capacity for ex-situ conservation of amphibians and create an additional backup at a second site. The PARC project is characterized by the result of the joint effort of multiple organizations and large numbers of people who, over the years, have contributed to the conservation of Panama’s amphibians.

MiAmbiente and the STRI have an inter-agency collaborative agreement under which they work closely on the implementation of the Amphibian Conservation Action Plan in Panama approved in 2011. The Plan aims to ensure the conservation of amphibian populations through the implementation of actions that promote research and management, both in situ (in their habitat) and ex situ (outside their habitat) in addition to promoting the education of society in general. This plan integrates specific research, conservation and education activities in the short and medium term with the goal of safeguarding our natural heritage.

This visit served as a joint verification by STRI and MiAmbiente on the progress of the project. An important milestone has been reached in the implementation of this Action Plan, as this is the first time in Panama that an amphibian conservation project is executing the phase where the behavior and survival of frogs reared in captivity is being investigated by exposing the animals to their natural environment. The results of these release trials will be of great use in guiding future efforts to re-establish the populations of certain species of frogs at sites where they have decreased in abundance or disappeared.

Did you know that Panama continues to pioneer amphibian conservation?

Celebrating our Natural Heritage

Almost thirty years have passed since Panamanian and international scientists formed working groups to investigate the mysterious disappearances of amphibians (frogs, toads, salamanders and caecilians) around the world. Motivated by their devotion to these animals and their inexhaustible curiosity, in 1999 scientists from the Smithsonian’s National Zoo in Washington, D.C. and the University of Maine, in the United States, discover the infectious fungus, Batrachochytrium dendrobatidis, commonly known as the chytrid fungus, responsible for the massive amphibian die-off in Panama’s western highlands.

In 2009, the Panama Amphibian Rescue and Conservation Project (PARC – www.amphibianrescue.org) project was established to safeguard Panamanian amphibians at risk of extinction, such as the Golden Frog. Today, this operation continues to make significant progress toward amphibian conservation, thanks to generous support from Panama’s national government, the Smithsonian Tropical Research Institute (STRI) and many national and international entities, both public and private. Committed to the conservation of Panama’s natural heritage, the institute has invested more than four million dollars in amphibian rescue and conservation, continually placing valuable scientific resources in the hands of Panamanian professionals.

Next September, STRI will join the international scientific community to celebrate a group of researchers who dedicated their careers to the study of the fungus and the preservation of Panamanian amphibians, with hopes that soon we will also be able celebrate the successful reintroduction of these charismatic animals to their natural environment.

Priority rescue species PARC

About the Smithsonian Tropical Research Institute:

The Panama-based Smithsonian Tropical Research Institute (STRI) is the only dependency of the Smithsonian Institution located outside the United States and is dedicated to enriching knowledge about the biological diversity of the tropics (www. Stri.si.edu).

What began in 1923 as a small field station on Isla Barro Colorado in the former Panama Canal Zone, today represents one of the world’s leading research institutions. STRI’s facilities provide a unique opportunity for long-term ecological studies in the tropics and are intensively used by more than 1400 scientists, including Panamanians and visitors who come every year from academic and research institutions in the Americas and around the world.

First Release Trial to Help Pave the Way for Reintroduction Programs for Critically Endangered Frogs

Ninety Limosa harlequin frogs (Atelopus limosus) bred in human care are braving the elements of the wild after Smithsonian scientists sent them out into the Panamanian rainforest as part of their first-ever release trial. The study, led by the Panama Amphibian Rescue and Conservation Project, aims to determine the factors that influence not only whether frogs survive the transition from human care to the wild, but whether they persist and go on to breed.

“Only by understanding the trials and tribulations of a frog’s transition from human care to the wild will we have the information we need to someday develop and implement successful reintroduction programs,” said Brian Gratwicke, international program coordinator for the rescue project and Smithsonian Conservation Biology Institute (SCBI) amphibian conservation biologist. “Although we are not sure whether any of these individual frogs will make it out there, this release trial will give us the knowledge we need to tip the balance in favor of the frogs.”

The Limosa harlequin frogs released at the Mamoní Valley Preserve, have small numbered tags inserted under their skin so that researchers can tell individuals apart. The scientific team also gave each frog an elastomer toe marking that glows under UV light to easily tell this cohort of frogs apart from any future releases. Smithsonian-Mason School of Conservation Ph.D. student Blake Klocke is currently monitoring the frogs daily at the site, collecting information about survivorship, dispersal, behavior and whether the warm micro-climate in the area provides any protection against disease.

The study is also looking at whether a “soft release” boosts the frogs’ ability to survive. Thirty of the newly released frogs spent a month at the site in cages, acclimating to their surroundings and foraging on leaf-litter invertebrates. Eight of these frogs, and eight that were released without the trial period, are wearing miniature radio transmitters that will give Klocke and team a chance to look at differences in survival and persistence between the two groups. The researchers also collected skin bacteria samples from the soft release frogs to measure changes during their transition from captivity to the wild.

“The soft release study allowed us to safely expose captive-bred frogs to a more balanced and varied diet, changing environmental conditions and diverse skin bacteria that can potentially increase their survival in nature,” said Angie Estrada, Ph.D. student at Virginia Tech and a member of the team leading the soft release, which was funded through a Smithsonian Tropical Research Institute (STRI) grant and support from the National Science Foundation. “It allowed us to monitor health and overall body condition of the animals without the risk of losing the frogs right away to a hungry snake.”


Limosa harlequin frogs are especially sensitive to the amphibian chytrid fungus, which has pushed frog species to the brink of extinction primarily in Central America, Australia and the western United States. The Panama Amphibian Rescue and Conservation Project brought a number of individuals into the breeding center between 2008 and 2010 as chytrid swept through their habitat. The Limosa harlequin frogs in this release trial are the first captive-bred generation of the species, and only part of the rescue project’s total insurance population for the species.

“After all the work involved in collecting founder individuals, learning to breed them, raising their tadpoles, producing all their food, and keeping these frogs healthy, the release trial marks a new, exciting stage in this project,” said Roberto Ibáñez, in-country director of the rescue project and STRI scientist. “These captive-bred frogs will now be exposed to their world, where predators and pathogens are ever-present in their environment. Their journey will help provide the key to saving not only their own species, but Panama’s other critically endangered amphibian species.”

The Panama Amphibian Rescue and Conservation Project is a project partnership between the Cheyenne Mountain Zoo, the Houston Zoo, Zoo New England, the SCBI and STRI. This project received additional support from the Friends of the National Zoo, Holohil, The Woodtiger Fund, Mamoni Valley Preserve and Earth Train.

SCBI plays a leading role in the Smithsonian’s global efforts to save species from extinction and train future generations of conservationists. SCBI spearheads research programs at its headquarters in Front Royal, Va., the Smithsonian’s National Zoo in Washington, D.C., and at field research stations and training sites worldwide. SCBI scientists tackle some of today’s most complex conservation challenges by applying and sharing what they learn about animal behavior and reproduction, ecology, genetics, migration and conservation sustainability.

First-Time Breeding of Frog Suggests Hope for Critically Endangered Species

First captive-bred Craugastor evanesco photo by R. Ibanez.

When researchers discovered Craugastor evanesco in the rainforests of Panama, they called it the vanishing robber frog to signify just how quickly the deadly infectious amphibian disease chytridiomycosis had devastated its population. By the time the researchers had published about the new species in 2010, the vanishing robber frog had already disappeared from the park where they had discovered it.

Now, however, the vanishing robber frog may have a fighting chance at a future thanks to the Panama Amphibian Rescue and Conservation Project, which in December became the first program to breed the species in human care. After multiple attempts at breeding the species since 2015, a single pair has now produced one offspring—a success that has encouraged a cautious optimism that the rescue project can replicate the effort.

“A single individual doesn’t make a successful captive breeding program, but demonstrates that it can be done,” says Brian Gratwicke, an amphibian conservation biologist for the Smithsonian Conservation Biology Institute and rescue project international coordinator. “Every journey begins with the first step and this is a critical first step, not just for this species, but potentially for other endangered amphibians with similar reproductive needs.”

The rescue project, a world-class amphibian center run by SCBI and the Smithsonian Tropical Research Institute, currently has a founding population of 20 males and 20 females of the vanishing robber frog. Conservationists collected the frogs from a lowland site in central Panama where the rescue project is working with the support of Minera Panama S.A. to conserve amphibians in the area. But bringing a new and critically endangered species into human care requires learning its own unique husbandry and reproductive needs before it blinks out of existence—sometimes resulting in insurmountable challenges.

“Piecing together a species’ natural history with artificial systems, we can recreate to the best of our abilities an environment where the animals feel comfortable enough to breed,” said Heidi Ross, STRI’s director of El Valle Amphibian Conservation Center, whose expertise and persistence led to the successful first-time breeding of the species. “If we can get them to this point, to become sexually active in our artificial habitat, then we can simply tweak the system based on what worked, what did not work, and what materials are at our disposal. What we arduously do day in and day out is make sure we are providing the basic needs to the animals so that they help us help them from going extinct in the wild.”

The Craugastor group of frogs has a unique reproductive system called direct development—they bury eggs in wet sand and fully formed miniature adults hatch from the eggs. Understanding the frogs’ reproductive cues, special dietary needs and how to emulate the natural environment is essential to successful breeding, Ross says.

“Given the current difficult situation for amphibians in our region, this project represents scientific and biological hope, not only for this species of frog, but also for the recovery of Craugastor evanesco within its distribution range,” said Blanca Araúz, biologist and biodiversity superintendent of Minera Panamá. “As one of the species of interest for our project Cobre Panamá, its reproduction in captivity is important. Because the deadly infectious disease acts fast, experienced scientists can control the infection in these frogs and breed them under better conditions.”

Although scientists are still occasionally finding individual vanishing robber frogs in the field, they have not found a viable, self-sustaining population. Chytridiomycosis has been linked to dramatic population declines of amphibian species worldwide. This particular group of frogs in the Craugastor rugulosus series are particularly susceptible to chytridiomycosis with three closely related species in Panama having disappeared, putting extra pressure on ensuring the survival of Craugastor evanesco.

“It’s all a learning curve,” Gratwicke says. “I’m hopeful that we’ll be able to replicate this breeding event to develop a sustainable breeding program. If we can do that, we’ll be able to get this species back out in the wild as soon as we figure out how to safely do so. If we can do that, it’ll be time to celebrate.”

The Panama Amphibian Rescue and Conservation Project is a partnership between the Houston Zoo, Cheyenne Mountain Zoo, Zoo New England, SCBI and STRI.

Earth optimism: Frogs

What’s Working in Conservation

The global conservation movement has reached a turning point. We have documented the fast pace of habitat loss, the growing number of endangered and extinct species, and the increasing speed of global climate change. Yet while the seriousness of these threats cannot be denied, there are a growing number of examples of improvements in the health of species and ecosystems, along with benefits to human well-being, thanks to our conservation actions. Earth Optimism is a global initiative that celebrates a change in focus from problem to solution, from a sense of loss to one of hope, in the dialogue about conservation and sustainability.

The Smithsonian will host an Earth Optimism Summit in Washington DC April 21-23, 2017
Please register if you are coming in person or stream the presentations online here: https://earthoptimism.si.edu/calendar/summit Sunday is a free public day.

Dr Brian Gratwicke will present the Panama Amphibian Rescue and Conservation Project on Saturday April 22 5:15pm on the panel Science on the Edge

Love potion for frogs

Scientists at the Smithsonian Institution and partners have published a paper that optimizes sperm collection protocols from the critically endangered Panamanian Golden Frog Atelopus zeteki. It also improves our understanding of reproduction in endangered harlequin frogs. The research, to be published published 15 March 2017, in Theriogenology, was conducted by Dr. Gina DellaTogna, a Panamanian biologist who studied this charismatic animal at the National Zoological Park in Washington DC. The study characterizes the dose-response patterns for several artificial hormone treatments and describes the sperm morphology for the first time in this species.

Atelopus zeteki spermatazoan

“This study is important, because it contributes towards the basic understanding of reproduction of a highly endangered group of frogs in Latin America,” said DellaTogna, who performed the experiments for her PhD at the University of Maryland. “This study has already helped us to solve critical reproduction problems in captive Atelopus collections in Panama and allowed us to repeatedly collect high-quality sperm samples for genome resource banking at any time of the year, without harming the frogs.”

“Basic reproductive research is something that has yielded huge conservation dividends for the successful care and management of other endangered species like Pandas and Black Footed Ferrets,” said Pierre Comizzoli, a co-author of the paper and reproduction specialist at the National Zoo. “Gina’s research opens the door to develop methods like sperm freezing and storage to preserve the long term genetic integrity and diversity in small populations.”
The research is particularly relevant to current amphibian conservation efforts in Panama where the Panama Amphibian Rescue and Conservation Project has captive-breeding colonies of five species of Atelopus that are threatened with extinction from the deadly fungal disease chytridiomycosis.

Roberto Ibáñez, and Gina DellaTogna working on hormonal stimulation of frogs at the Panama Amphibian Rescue and Conservation Project

“Successful reproduction is key to any captive assurance program,” said Roberto Ibáñez, the director of the Panama Amphibian Rescue and Conservation project at the Smithsonian Tropical Research Institute in Panama. “Gina has already begun applying what she has learned to successfully help us to produce offspring from four other endangered harlequin frog species. I hope that she will eventually extend it to species with different modes of reproduction that are also difficult to breed”.

The research was made possible with assistance from the Maryland Zoo in Baltimore who manage the Golden Frog Species Survival Plan. Funding was provided from the Panamanian Government’s Secretaría Nacional de Ciencia y Tecnología (SENACYT), The WoodTiger Fund, the Smithsonian Endowment for Science and the University of Ottawa Research Chairs Program.

Della Togna G, Trudeau VL, Gratwicke B, Evans M, Augustine L, Chia H, Bronikowski EJ, Murphy JB, Comizzoli P. 2017 Effects of hormonal stimulation on the concentration and quality of excreted spermatozoa in the critically endangered Panamanian golden frog (Atelopus zeteki). Theriogenology. http://dx.doi.org/10.1016/j.theriogenology.2016.12.033 

More Good Reasons Not to Lick a Toad

A New Review of Chemicals Produced by the Toad Family, Bufonidae

Cane toad (Rhinella marinus)

As human diseases become alarmingly antibiotic resistant, identification of new pharmaceuticals is critical. The cane toad and other members of the Bufonidae family produce substances widely used in traditional folk medicine, but endangered family members, like Panama’s golden frog, Atelopus zeteki, may disappear before revealing their secrets. Smithsonian scientists and colleagues catalog the known chemicals produced by this amphibian family in the Journal of Ethnopharmacology highlighting this largely-unexplored potential for discovery.

“We’re slowly learning to breed members of this amphibian family decimated by the chytrid fungal disease,” said Roberto Ibañez, Panamanian staff scientist at the Smithsonian Tropical Research Institute (STRI) and in-country director of the Panama Amphibian Conservation and Rescue (PARC) project. “That’s buying us time to understand what kind of chemicals they produce, but it’s likely that animals in their natural habitats produce an even wider range of compounds.”

15 of 47 frog and toad species used in traditional medicine belong to the family Bufonidae. For millennia, secretions from their skin and from glands near their ears called parotid glands, as well as from their bones and muscle tissues have been used as remedies for infections, bites, cancer, heart disorders, hemorrhages, allergies, inflammation, pain and even AIDS.

Toxins of two common Asian toad species, Bufo gargarizans and Duttaphrynus melanostictus, produce the anticancer remedies known as Chan Su and Senso in China and Japan, respectively. Another preparation used to treat cancer and hepatitis, Huachansu or Cinobufacini, is regulated by the Chinese State Food and Drug Administration. In Brazil, the inner organs of the toad, Rhinella schneideri, are applied to horses to treat the parasite Habronema muscae. In Spain, extract from the toad Bufo bufo is used to treat hoof rot in livestock. In China, North and South Korea, ranchers use the meat of Bufo gargarizans to treat rinderpest.

Only a small proportion of the more than 580 species in the Bufonidae family have been screened by scientists. “In Panama, not only do we have access to an amazing diversity of amphibian species,” said Marcelino Gutiérrez, investigator at the Center for Biodiversity and Drug Discovery at Panama’s state research institute, Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia (INDICASAT),  “we’re developing new mass spectrometry and nuclear magnetic resonance spectroscopy techniques to make it easier and cheaper to elucidate the chemical structures of the alkaloids, steroids, peptides and proteins produced by these animals. We work closely with herpetologists so as not to further threaten populations of these species in the wild.” Their efforts to catalog chemicals produced by the Bufonidae included researchers from the University of Panama, Vanderbilt University, in Tennessee, U.S.A. and Acharya Nagarjuna University in Guntur, India.

Most of the chemicals produced by frogs and toads protect them against predators. Atelopus varius contains tetrodototoxin. Chiriquitoxin is found in Atelopus limosus, one of the first species that researches succeeded in breeding in captivity as well as in Atelopus glyphus and Atelopus chiriquiensis. An atelopidtoxin (zetekitoxin) from the Panamanian golden frog, Atelopus zeteki, appears to consist of two toxins. Toxins from a single frog skin can kill 130-1000 mice.

The golden frog, A. zeteki, Panama’s national frog, is the only species of the genus Atelopus that secretes zetekitoxins. Threatened by the chytrid fungal disease that infects the skin and causes heart attacks, with collection for the exotic pet trade and by habitat destruction, if golden frogs were to disappear, they would take this potentially valuable chemical with them.

More than 30 percent of amphibians in the world are in decline. Racing to stay ahead of the wave of disease spreading across Central America, Panama is leading the way in conservation efforts. The Smithsonian’s Panama Amphibian Rescue and Conservation project (PARC) identified several Atelopus species in danger of extinction, and are learning how to create the conditions needed to breed them in captivity. Not only do animal caretakers at their facilities in Gamboa and El Valle, Panama experiment to discover what the frogs eat, they also recreate the proper environment the entire frog life-cycle: egg laying, egg hatching and tadpole survival, to successfully breed Atelopus. Each species has unique requirements, making it an expensive challenge to create this Noah’s ark for amphibians.

The chemical building blocks amphibians use to create toxic compounds come from sources including their diet, skin glands or symbiotic microorganisms. Toads in the genus Melanophryniscus sequester lipophilic alkaloids from their complex diet consisting of mites and ants. Researchers found that toxins found in a wild-caught species of Atelopus could not be isolated from frogs raised in captivity: another reason to conserve frog habitat and to begin to explore the possibility of releasing frogs bred in captivity back into the wild.

Learn more about amphibians by visiting the PARC blog and the Panama’s Fabulous Frogs exhibit at the Smithsonian’s Culebra Point Nature Center in Panama.

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a part of the Smithsonian Institution. The Institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website. Promo video.

# # #

Rodriguez, Candelario, Rollins-Smith, Louise, Ibanez, Roberto, Durant-Archibold, Armando, Gutiérrez, Marcelino. 2016. Toxins and pharmacologically active compounds from species of the family Bufonidae (Amphibia, Anura). Journal of Ethnopharmacology, doi:10.1016/j.jep.2016.12.021