Bringing Panamanian Frogs Home

In 2004, as the amphibian chytrid fungus was sweeping through Panama, a group of conservationists established the Amphibian Rescue and Conservation Coalition (ARCC). At that time, there was insufficient capacity in Panama to care for captive assurance colonies in country and the goal of this project was to establish U.S. captive assurance colonies of multiple Panamanian species. Frogs were collected from the wild and exported in 2005 to the Atlanta Zoo and Atlanta Botanical Gardens who cared for the animals.

Dr. Brad Wilson and Chelsea Thomas inside the amphibian rescue pod at the Atlanta Botanical Gardens, packing genetically representative frogs from the collection for their flight.

Of the multiple species in the collection, the crowned treefrog (Anotheca spinosa) and the lemur leaf frog (Agalychnis lemur) bred well in captivity. The collection at the Atlanta Botanical Gardens was held in complete quarantine isolation for the last 8 years. While in Panama, two amphibian conservation-breeding facilities were built to care for endangered frogs. However, on the Panama side, we had too few founder animals to assure the long-term genetic integrity of these species. After careful health screening for amphibian chytrid fungus, parasites and examination of pathology records for the collection it was determined to be in good health, and a total of 47 genetically representative individuals of known lineage were identified for repatriation to Panama.

A Crowned treefrog Anotheca spinosa This species lives in the rainforest canopy and breeds in treeholes where the mother lays unfertilized eggs to feed her tadpoles.

The lemur leaf frog Agalychnis lemur. Wild populations have been decimated in the wild due to the amphibian chytrid fungus.

After obtaining permits from the Panamanian Ministry of Agriculture and the Ministry of Environment, and well as the US Department of Agriculture and the Fish and Wildlife Service, the frogs were flown back to Panama on May 16, 2018. The frogs were packed to IATA specifications (In delicups with damp moss, artificial leaves and packed in a cooler with Phase 22 thermal regulating packs). The frogs all made the trip in good health and are now being held in a quarantined shipping container at the Panama Amphibian Rescue and Conservation Project in Gamboa. After a quarantine period, we will breed these animals with the captive-breeding stock already in Panama.

Elliott Lassiter, Jorge Guerrel (Smithsonian Tropical Research Institute) and Chelsea Thomas (Atlanta Botanical Gardens) unpack frogs inside a quarantined shipping container in Gamboa.

Visitors to the center can see frogs through a display window as part of a miniature exhibition.

The 14 years of investment, and dedicated conservation efforts at the Atlanta Botanical Gardens will significantly improve the genetic population management goals for both of these species in Panama, bringing the original ARCC project full circle.

Defying disease: Panama’s frogs are fighting back

Many infectious diseases can fade away after initial outbreaks. Bubonic plague, cholera, and influenza are examples from recent human history. The same phenomenon occurs for wildlife diseases as well. How does this happen? One popular explanation is that the pathogen evolves to become less deadly, so that it doesn’t completely wipe out its hosts, ensuring pathogen survival. While this scenario does sometimes play out, we know that there are other reasons why the severity of diseases can change over time.

Cori Richards and Jamie Voyles

For amphibians, we’ve known about a highly lethal disease called “chytridiomycosis” since the 1990s. This disease was especially devastating in Central America, where it may have wiped out entire species. In this study, we made the exciting discovery that some amphibian species – frogs that were thought to be extinct – are persisting, and even recovering, after lethal disease outbreaks. We wanted to understand how it was happening. Was it a change in the pathogen, the frogs, or both?

To answer these questions, we did two things. To begin with, we surveyed frogs in Panama before and after the disease outbreak. In addition, we collected samples of the pathogen at multiple time points: during initial outbreaks and ~10 years later. We found that nearly a decade after the outbreak, the pathogen was just as deadly. However, the frogs are surviving and have better defenses against it. Panama’s frogs are fighting back! Understanding how amphibian communities are recovering after this disease outbreak is important multiple reasons. First, resolving how this works will help us develop more informed conservation strategies to protect amphibians from disease-induced extinctions. Second, clarifying how disease outbreaks subside will help us predict, and respond to, other emerging pathogens in plants, wildlife, and in humans. These goals are increasingly important in a time when rapid globalization has increased the introduction of pathogens to naïve host populations.

Atelopus varius is one species that appears to have evolved antifungal skin secretions

by Jamie Voyles and Cori Richards-Zawacki

Read the paper: Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation BY JAMIE VOYLES, DOUGLAS C. WOODHAMS, VERONICA SAENZ, ALLISON Q. BYRNE, RACHEL PEREZ, GABRIELA RIOS-SOTELO, MASON J. RYAN, MOLLY C. BLETZ, FLORENCE ANN SOBELL, SHAWNA MCLETCHIE, LAURA REINERT, ERICA BREE ROSENBLUM, LOUISE A. ROLLINS-SMITH, ROBERTO IBÁÑEZ, JULIE M. RAY, EDGARDO J. GRIFFITH, HEIDI ROSS, CORINNE L. RICHARDS-ZAWACKI SCIENCE 30 MAR 2018 : 1517-1519

Variable Harlequin Frog release trials begin in Panama

Once common along highland streams from western Costa Rica to western Panama, the variable harlequin frog is endangered throughout its range, decimated by a disease caused by the amphibian chytrid fungus. On Jan. 17, Smithsonian researchers released approximately 500 frogs at Cobre Panama concession site in Panama’s Colon province as a first step toward a potential full-scale reintroduction of this species. This release trial is included in Cobre Panama’s biodiversity conservation plan as an important part of their environmental commitments.

Composite image showing variation in coloration within this population of frogs

The variable harlequin frog, Atelopus varius, takes its name from the variety of neon colors—green, yellow, orange or pink—juxtaposed with black on its skin. In order to monitor the released frogs over time, 30 are wearing miniature radio transmitters. The scientific team also gave each frog an elastomer toe marking that glows under UV light to mark individuals as part of a population monitoring study.


“Before we reintroduce frogs into remote areas, we need to learn how they fare in the wild and what we need to do to increase their chances of survival in places where we can monitor them closely,” said Brian Gratwicke, international coordinator of the Panama Amphibian Rescue and Conservation project (PARC) at the Smithsonian Conservation Biology Institute. “Release trials may or may not succeed but the lessons we learn will help us to understand the challenges faced by a frog as it transitions from captivity into the wild.”

Heidi Ross and her team at our facilities in the Nispero Zoo successfully bred and reared these animals for the release trial

Variable harlequin frogs are especially sensitive to the amphibian chytrid fungus, which has pushed frog species to the brink of extinction in Central America. PARC brought a number of individuals into the breeding center between 2013 and 2016 as chytrid continued to impact wild populations.

 

The field team all assembled with frogs ready for the release trial

“The variable harlequin frog is one of the closest relatives of Atelopus zeteki, Panama’s iconic golden frog, another target species in our captive breeding program,” said Roberto Ibañez, PARC project director at the Smithsonian Tropical Research Institute in Panama. “We’ll be monitoring the surrounding amphibian community and the climate at this site, and comparing this to the amphibian community at another, control site. This kind of intensive monitoring will help us to understand disease dynamics in relation to the release trials”

One of our Atelopus varius wearing a mini radio-transmitter

PARC hopes to secure the future for this and other endangered amphibians by reintroducing animals bred in captivity according to an action plan developed with Panama’s Ministry of the Environment and the International Union for the Conservation of Nature (IUCN) and other stakeholders. “It took us several years to learn how to successfully breed these frogs in captivity,” said Ibañez. “As the number of individuals we have continues to increase, it provides new research opportunities to understand factors influencing survival that will ultimately inform long-term reintroduction strategies.”

The PARC project thanks Cobre Panama, National Geographic Society, Mohammed bin Zayed Species Conservation Fund and The WoodTiger Fund for their generous support.

PARC is a partnership between the Cheyenne Mountain Zoo, the Houston Zoo, the Smithsonian Tropical Research Institute, the Smithsonian Conservation Biology Institute and Zoo New England. It has two facilities in Panama: the Gamboa Amphibian Rescue and Conservation Center at STRI and the El Valle Amphibian Conservation Center at El Nispero. Combined, these facilities have a full-time staff caring for a collection of 12 endangered species.

SCBI plays a leading role in the Smithsonian’s global efforts to save wildlife species from extinction and train future generations of conservationists. SCBI spearheads research programs at its headquarters in Front Royal, Va., the Smithsonian’s National Zoo in Washington, D.C., and at field research stations and training sites worldwide. SCBI scientists tackle some of today’s most complex conservation challenges by applying and sharing what they learn about animal behavior and reproduction, ecology, genetics, migration and conservation sustainability.

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The Institute furthers the understanding of tropical biodiversity and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems.

Encouraging Study Suggests Moratorium on Salamander Imports Could Be Helpful in Preventing Spread of Disease

A recent rule put in place in 2016, restricting the international import of 201 salamander species into the United States, aimed to prevent the newly discovered deadly salamander fungal disease, Batrachochytrium salamandrivorans (Bsal), from entering the country. In a new study published Oct. 13 in Scientific Reports, Smithsonian Conservation Biology Institute scientists reveal that the moratorium seemingly has a chance to do its job effectively.

Researchers swabbing an emperor newt at the Smithsonian’s National Zoo. Emperor newts belong to a genus of newts from Asia that are currently subjected to the U.S. Fish and Wildlife Service’s moratorium on salamander imports because of the risk that they may carry the deadly salamander fungal disease, Batrachochytrium salamandrivorans (Bsal).

“When the moratorium went into effect, we did not know if Bsal was already in the United States in pet salamanders and whether we were closing the barn door after the horse had already escaped,” said Brian Gratwicke, SCBI amphibian conservation biologist and paper senior author. “Our study did not find the pathogen in pet salamander populations in the United States, which is good news for native salamanders, especially in the Appalachian region—a salamander biodiversity hotspot. It also means that we must continue to be vigilant and prevent the disease from entering the country.”

The study marks the first general survey for Bsal in pet salamanders in the United States. The researchers worked with the Amphibian Survival Alliance to mail out sampling kits to salamander pet owners. In return, the team received skin swab samples from 639 salamanders belonging to 65 species, many of which are potential carriers of Bsal. None of the samples came back with evidence of Bsal, according to tests conducted in SCBI’s Center for Conservation Genomics.

“Working with the pet-hobbyist community on this project gave us a chance to alert this key group to a potential problem and was critical in determining whether Bsal has been imported into the United States,” said Blake Klocke, George Mason University’s Department of Environmental Science and Policy doctoral student, researching with SCBI and lead author on the study. “We hope that they will continue to be watchdogs for signs of Bsal and will implement testing and biosecurity protocols into their regular routine to prevent the possible spread of disease in the future.”

Bsal was discovered after populations of fire salamanders in the Netherlands experienced catastrophic declines from the disease, which was likely introduced from Asia, the source of most international exports of salamander species for the pet trade. Bsal is similar to a frog-killing fungus called Batrachochytrium dendrobatidis (Bd), which has been a major driver of global amphibian declines and extinctions. Bsal has been detected in the wild in the Netherlands, Belgium, Germany and Vietnam, as well as in in captive individuals in the United Kingdom and Germany.

The Lacey Act, which includes the 201 species of salamanders the U.S. Fish and Wildlife Service list as “injurious wildlife” (those most susceptible to Bsal or likely to spread Bsal) limits both the import of these animals from other countries and their transfer over state lines. According to the paper, the Lacey Act decision reduced the number of salamanders imported to the United States from 2015 to 2016 by 98.4 percent.

The United States is home to 190 native species of salamanders. The Scientific Reports study complements SCBI’s ongoing tests of salamanders in the wild, which have also come back negative for Bsal. SCBI will continue to screen for the disease in the wild and work with collaborators on developing methods to manage the spread of Bsal should it be introduced into the wild.

“Salamanders play a key role in maintaining the health of our forests and may even help regulate climate,” said Carly Muletz-Wolz, SCBI research scientist and paper co-author. “If Bsal were to hitch a ride to the eastern United States specifically, where salamanders are particularly abundant, it could spread quickly and result in catastrophic changes to the ecosystems. It is imperative that we do all we can to prevent the introduction of Bsal into the country and that we continue to monitor our wild populations so we can take swift action if needed.”

The paper’s additional authors are Matthew Becker and Robert Fleischer, SCBI; James Lewis, Rainforest Trust; and Larry Rockwood and A. Alonso Aguirre, George Mason University.

https://www.nature.com/articles/s41598-017-13500-2

Golden Frog Festival Calendar of Events 2017

El Valle de Anton

Punta Culebra Nature Center (Amador)

  • 16-18 August 1-5pm – Frog exhibition and fun activities for kids

Avenida Nacional

  • 10 -11 August – Golden Frog Mural painting by artists

Gamboa

  • Saturday August 19 – Open house Panama Amphibian Rescue and Conservation Project Gamboa 9am-4pm

AltaPlaza Mall 

  • Sunday August 27 – 3-7pm – Golden Frog Festivities for the whole family

The Smithsonian Tropical Research Institute and Panama’s Ministry of the Environment (MiAmbiente) Participate in Frog Release Trials in Eastern Panama as Part of the Implementation of the Action Plan for the Conservation of Amphibians in Panama

Scientists from the Smithsonian Tropical Research Institute (STRI) and officials from Panama’s Ministry of the Environment (MiAmbiente) visited the Mamoní Valley Reserve, where release trials are underway to release Limosa Harlequin (Atelopus limosus) frogs. These frogs were bred in captivity and are the descendants of frogs collected a few years ago in the same area.

MiAmbiente was represented by biologists Erick Núñez and Anthony Vega, technicians from the Department of Biodiversity of the Office of Protected Areas and Wildlife. They were accompanied by STRI staff scientist Roberto Ibáñez, director of the Panama Amphibian Rescue and Conservation Project (PARC), and Juan Maté, STRI’s manager for scientific affairs and operations and institutional liaison with MiAmbiente. PhD student at the Smithsonian-Mason School of Conservation at George Mason University, Blake Klocke, who is currently conducting this research, hosted and guided this visit, together with his field assistant, Mirjana Mataya.

Some of the frogs are from the initial release trial conducted in the El Valle del Mammoní Reserve by Panamanian PhD students from Virginia Tech, Daniel Medina and Angie Estrada. They kept the frogs inside enclosures in this reserve to protect them from predators and so that they could obtain samples to determine if they were infected by the chrytrid fungus (Batrachochytrium dendrobatidis). In a second release trial, Blake Klocke freed these and additional frogs. In this phase of the investigation, one of the objectives is to determine if it is necessary to keep in enclosures before releasing them completely. Some of the frogs were equipped with radio transmitters that allow researchers to follow their movements and estimate the size of their territories.

The visit with MiAmbiente officials was aimed at monitoring the release trials and the progress of research. Blake Klocke showed them how the radio-telemetry tracking system works using mini-transistors. This technological tool, applied to scientific research, allows us to follow the movements of these small frogs. Frogs without radio transmitters were certainly harder to observe. Likewise, measurements of the size and weight of frogs were obtained and samples of their skin were collected with swabs for detection of the chytrid fungus. At this point, the frogs have been kept close to the point of release. However, based on the data being collected, researchers will be able to estimate the future dispersion and survival of the frogs.

The initiative to advance the release trials is part of the Panama Amphibian Rescue and Conservation Project, known colloquially as PARC and administered by the Smithsonian Tropical Research Institute under the supervision of MiAmbiente. This project is a collaboration among several organizations including Cheyenne Mountain Zoo, Houston Zoo, Smithsonian National Zoological Park and New England Zoo. It has been supported by a long list of sponsors, among them Minera Panama SA.
PARC has two facilities, one at El Níspero Zoo in El Valle de Antón, Coclé, now known as PARC El Valle and the other in Gamboa in the Panama Canal Watershed, known as PARC Gamboa. The PARC El Valle facility received the first rescued frogs, which had been temporarily kept at the Hotel Campestre in 2007, an initiative of the El Nispero Zoo and the Houston Zoo, with funding from the latter as an emergency response to the reduction in numbers of amphibians due to the mortality caused when the fungus arrived in El Valle de Antón in 2006. In 2009, this facility in El Valle came under the umbrella of the PARC project, and has continued its operation within the El Níspero Zoo. In addition, in 2009, PARC Gamboa initially began with the building of facilities at Summit Municipal Park, before relocating to its current location in Gamboa in 2012 to improve and expand capacity for ex-situ conservation of amphibians and create an additional backup at a second site. The PARC project is characterized by the result of the joint effort of multiple organizations and large numbers of people who, over the years, have contributed to the conservation of Panama’s amphibians.

MiAmbiente and the STRI have an inter-agency collaborative agreement under which they work closely on the implementation of the Amphibian Conservation Action Plan in Panama approved in 2011. The Plan aims to ensure the conservation of amphibian populations through the implementation of actions that promote research and management, both in situ (in their habitat) and ex situ (outside their habitat) in addition to promoting the education of society in general. This plan integrates specific research, conservation and education activities in the short and medium term with the goal of safeguarding our natural heritage.

This visit served as a joint verification by STRI and MiAmbiente on the progress of the project. An important milestone has been reached in the implementation of this Action Plan, as this is the first time in Panama that an amphibian conservation project is executing the phase where the behavior and survival of frogs reared in captivity is being investigated by exposing the animals to their natural environment. The results of these release trials will be of great use in guiding future efforts to re-establish the populations of certain species of frogs at sites where they have decreased in abundance or disappeared.

Did you know that Panama continues to pioneer amphibian conservation?

Celebrating our Natural Heritage

Almost thirty years have passed since Panamanian and international scientists formed working groups to investigate the mysterious disappearances of amphibians (frogs, toads, salamanders and caecilians) around the world. Motivated by their devotion to these animals and their inexhaustible curiosity, in 1999 scientists from the Smithsonian’s National Zoo in Washington, D.C. and the University of Maine, in the United States, discover the infectious fungus, Batrachochytrium dendrobatidis, commonly known as the chytrid fungus, responsible for the massive amphibian die-off in Panama’s western highlands.

In 2009, the Panama Amphibian Rescue and Conservation Project (PARC – www.amphibianrescue.org) project was established to safeguard Panamanian amphibians at risk of extinction, such as the Golden Frog. Today, this operation continues to make significant progress toward amphibian conservation, thanks to generous support from Panama’s national government, the Smithsonian Tropical Research Institute (STRI) and many national and international entities, both public and private. Committed to the conservation of Panama’s natural heritage, the institute has invested more than four million dollars in amphibian rescue and conservation, continually placing valuable scientific resources in the hands of Panamanian professionals.

Next September, STRI will join the international scientific community to celebrate a group of researchers who dedicated their careers to the study of the fungus and the preservation of Panamanian amphibians, with hopes that soon we will also be able celebrate the successful reintroduction of these charismatic animals to their natural environment.

About the Smithsonian Tropical Research Institute:

The Panama-based Smithsonian Tropical Research Institute (STRI) is the only dependency of the Smithsonian Institution located outside the United States and is dedicated to enriching knowledge about the biological diversity of the tropics (www. Stri.si.edu).

What began in 1923 as a small field station on Isla Barro Colorado in the former Panama Canal Zone, today represents one of the world’s leading research institutions. STRI’s facilities provide a unique opportunity for long-term ecological studies in the tropics and are intensively used by more than 1400 scientists, including Panamanians and visitors who come every year from academic and research institutions in the Americas and around the world.