Stopping the amphibian apocalypse

Urgent Funding Appeal: Please help us to keep our amphibian project afloat.  

If you would like to discuss making a gift to support our work please email Brian Gratwicke gratwickeb[AT]si.edu . To make a credit card donation by phone please call our advancement department 202-633-8756.
Please mail checks to the address below and write Amphibian Rescue Project in the “Memo” field.

Attn: Amphibian Rescue Project
Smithsonian National Zoo and Conservation Biology Institute
P.O. Box 418320
Boston, MA 02241-8320

Golden Frogs at the National Zoo’s Reptile Discovery Center

Golden frogs are extinct in the wild, but in addition to two Panamanian facilities, about 50 zoos and aquariums in the USA participate in a Species Survival Program led by the Maryland Zoo to help breed and conserve these precious animals. Investigate TV interviews Matt Evans at the Smithsonian’s National Zoo and Conservation Biology Institute about his work with this species.

Following reintroduced frogs

The Panama Amphibian Rescue and Conservation Project completed the first reintroduction trial of the Limosa Harlequin frog (Atelopus limosus) in 2017, and our findings were published in the journal Frontiers in Amphibian and Reptile Science. Reintroducing a species comes with a lot of unknowns and questions, just a few are: Where will the frogs go? What is their life like outside of a terrarium? Will they become infected with amphibian chytrid fungus? The purpose of this first reintroduction trial was to begin to unravel some of these questions so the researchers could adapt their strategies and improve the odds of the frogs in the wild.

We were able to get a detailed life of the frogs post-reintroduction by radiotracking the frogs and checking in on them daily. We found that when frogs were provided a 30-day acclimation period in a predator-free rainforest mesocosm, their probability of survival significantly increased and they did not disperse as far as the hard-released animals. We know from other studies that more movement can increase the likelihood of predators finding animals, and that likely happened in this study too. Frogs that were released without radio transmitters were 44x less likely to be reencountered during stream surveys (finding a frog in the rainforest isn’t easy!). We were able to follow the lives of these frogs in the wild for up to 56 days after release and developed a method that can use both radio-tracked animals and non-radiotracked animal encounters to estimate survivorship by assigning different detection probabilities in the model.

We observed a couple predation events of reintroduced frogs and some became infected with amphibian chytrid fungus. However, we learned a lot and has no shortage of questions to continue researching to get this species (and others in Panama) back into the wild.

Read the open access paper here:
Klocke, B., Estrada, A., Mataya, M., Medina, D., Baitchman, E., Belden, L., Guerrel, J., Evans, M., Baughman, J. and Connette, G., Illueca, E., Ibáñez, R., Gratwicke, B. (2023) Movement and survival of captive-bred Limosa Harlequin frog (Atelopus limosus) released into the wild. Frontiers in Amphibian and Reptile Science, 1, p.1205938. https://doi.org/10.3389/famrs.2023.1205938 

by Blake Klocke

May frogs never stop singing!

In order to respond to the amphibian extinction global crisis, many initiatives to rescue endangered frogs and conserve biodiversity have been born. An example of that, is the Panama Amphibian Rescue and Conservation Project located in the Gamboa Rainforests. People may not know what we do or why we do it. But we are always there, working for the frogs, for biodiversity, for our planet. Watch this video made by PARC intern Michelle Castellanos.

 

Update on the conservation status of Harlequin Frogs in Panama

On May 30, 2019 a special issue of the Journal Biological Conservation entitled ‘Amphibian conservation in the Anthropocene: Progress and challenges‘ Edited by Vincent Devictor, Evan Grant, Erin Muths, Benedikt Schmidt, Silviu Petrovan was published. The focus of this issue is on examples of potential solutions to the amphibian crisis that are directly relevant to, and integrated with conservation management actions.

The issue features a case study on Atelopus in Panama, updating the known historical distribution records and modeling potentially suitable habitat (below).

The paper also updates the IUCN conservation status for each Panamanian Atelopus species and the status of each of these species in captive populations, with commentary on the potential use of the captive population in research to find solutions that may be useful in restoring wild populations.

Atelopus conservation status in Panama 2019

Lewis CHR., Richards-Zawacki CL., Ibáñez R., Luedtke J., Voyles J., Houser P., Gratwicke B. 2019 Conserving Panamanian harlequin frogs by integrating captive-breeding and research programs. Biol. Conserv. 236, 180–187. (doi:10.1016/J.BIOCON.2019.05.029)

Closure of Frog Facility at the Nispero Zoo

In May 2019, the Panama Amphibian Rescue and Conservation Project closed its facility at the Nispero Zoo to streamline and consolidate its captive-breeding operations at a single location in Panama. We are very grateful to the owners of the Nispero Zoo for their support of the amphibian conservation efforts for the past12 years.  This consolidation effort is part of a long-planned strategic move to reduce the costs associated with running two separate facilities. The living collection of animals is now residing at our expanded breeding facility at the Smithsonian Tropical Research Institute in Gamboa.

PARC Gamboa

The Panama Amphibian Rescue and Conservation Project”s Gamboa Facility

As part of the transition process, STRI  transferred custodianship of a portion of the living collection to MiAmbiente who allocated these frogs to the newly formed EVACC foundation. The EVACC foundation will continue to operate independently as a non-profit organization in El Valle de Anton.

Visitors who would like to see the frogs can visit our Fabulous Frogs exhibition at the Punta Culebra Nature Center in Amador, Panama City, or at our small exhibition niche in Gamboa (8:30am – 4pm daily).

Role of Zoos and Corporations in Conserving Panamanian Amphibians

The Panama Amphibian Rescue and Conservation Project was created in 2009 as a partnership between Zoo New England, Cheyenne Mountain Zoo, Houston Zoo, Smithsonian National Zoo, Smithsonian Tropical Research Institute and Defenders of Wildlife to build captive populations of species at risk of extinction from the deadly amphibian chytrid fungus. Together we have built significant capacity for amphibian conservation in Pamama by contributing financial resources, involving zoo staff in field work to collect and care for endangered amphibians, training our Panamanian colleagues in state-of-the art animal care, veterinary care, pedigree management and record-keeping.

Since the project was established, Zoos have provided approximately $300K per year with a total investment of $2.7m in the project that leveraged additional support of $3.9m in grants from Miambiente, First Quantum Minerals (Cobre Panama), USAID, the National Science Foundation, SENACYT, National Geographic, US Fish and Wildlife Service, Mohamed bin Zayed Species Conservation Fund, the Morris Animal foundation and other private donors. First Quantum Minerals (Cobre Panama) has been our largest corporate contributor, providing approximately $450K per year with a total investment of $2.3m in the project.

Milestones

Endangered Frogs
Established founding populations of 12 species of Panama’s most endangered frogs, including Panama’s iconic Panamanian Golden Frog. Reproduced all 12 species in captivity most of them bred in captivity for the first-time ever by project staff.

Priority rescue species PARC

Capacity-Building
Constructed the Gamboa Amphibian Rescue and Conservation Center which is now the largest amphibian conservation breeding center in the world and trained a professional cadre of conservation staff to care for the animals.

PARC Gamboa

Research
Established a world-class research program investigating the frog-killing chytrid fugus and searching for a cure for the disease. Conducting hormone stimulation research to improve captive reproduction. Continued publications of veterinary care, nutrition and husbandry of amphibians to improve knowledge to sustain captive amphibians.

Reintroductions
Conducted the first-ever reintroduction trials of amphibians to learn about the limiting factors how captive frogs transition back into the wild. This data will be used to inform future release strategies using adaptive management principles.

Education
Annual coordination of ‘Festival la Rana Dorada’ activities in Panama City, continued operation of fabulous frogs of Panama exhibition and the integrated informal schools’ curriculum.

Vision for the future
We need to continue to grow the captive amphibian populations to about 300 animals per species with even representation of founder animal genes as the primary assurance colony. This core captive population will safeguard against species’ extinction, and biological banking of gametes will help to ensure against unintended genetic bottlenecks in captivity. Surplus-bred animals will be used for further basic reintroduction research, breeding for disease-resistance, finding a cure for the amphibian chytrid fungus, and basic research that will ultimately be used to reestablish viable wild populations of these species.

Spindly leg syndrome in amphibians

Spindly leg syndrome is the bane of many captive breeding efforts in amphibians, causing much speculation on husbandry boards. This syndrome results in poorly developed limbs of post-metamorphic froglets. The condition has been observed in most of the species we have reared at the Panama Amphibian Rescue and Conservation Project and its a priority for us to resolve from an animal welfare and production perspective.

Atelopus certus post-metamorphs, an example of a SLS frog with poorly developed forelimbs (left) compared with a healthy froglet from the same clutch (right).

Many people had speculated that it was related to a nutritional deficiency in tadpoles or parent frogs, but the new study from the Panama Amphibian Rescue and Conservation Project using Atelopus tadpoles found no connection to diet, but treating the water by reverse osmosis filtration and then reconstituting the minerals was a sure-fire way to reduce the incidence of this syndrome. It is possible that the filtration process removed some factor that caused the syndrome, or that the reconstitution process added minerals such as calcium that were lacking in the original tap water.

One other factor that aggravated SLS was overfeeding of tadpoles, so our future work will manipulate dissolved mineral ratios in future experimental setups. We have been awarded a grant from the Morris Animal Foundation to continue our work on this. Further isolating the factor(s) responsible for causing this syndrome, will help us to improve captive amphibian welfare and allow managers to better control production of amphibians in captive breeding efforts.

Julio working on the second experiment manipulating food quantity, water composition and diet type. Each tank contained 20 full sibling Atelopus glyphus.

Citation: Camperio Ciani JF, Guerrel J, Baitchman E, Diaz R, Evans M, Ibáñez R, et al. (2018) The relationship between spindly leg syndrome incidence and water composition, overfeeding, and diet in newly metamorphosed harlequin frogs (Atelopus spp.). PLoS ONE 13(10): e0204314. https://doi.org/10.1371/journal.pone.0204314