May frogs never stop singing!

In order to respond to the amphibian extinction global crisis, many initiatives to rescue endangered frogs and conserve biodiversity have been born. An example of that, is the Panama Amphibian Rescue and Conservation Project located in the Gamboa Rainforests. People may not know what we do or why we do it. But we are always there, working for the frogs, for biodiversity, for our planet. Watch this video made by PARC intern Michelle Castellanos.

 

Update on the conservation status of Harlequin Frogs in Panama

On May 30, 2019 a special issue of the Journal Biological Conservation entitled ‘Amphibian conservation in the Anthropocene: Progress and challenges‘ Edited by Vincent Devictor, Evan Grant, Erin Muths, Benedikt Schmidt, Silviu Petrovan was published. The focus of this issue is on examples of potential solutions to the amphibian crisis that are directly relevant to, and integrated with conservation management actions.

The issue features a case study on Atelopus in Panama, updating the known historical distribution records and modeling potentially suitable habitat (below).

The paper also updates the IUCN conservation status for each Panamanian Atelopus species and the status of each of these species in captive populations, with commentary on the potential use of the captive population in research to find solutions that may be useful in restoring wild populations.

Atelopus conservation status in Panama 2019

Lewis CHR., Richards-Zawacki CL., Ibáñez R., Luedtke J., Voyles J., Houser P., Gratwicke B. 2019 Conserving Panamanian harlequin frogs by integrating captive-breeding and research programs. Biol. Conserv. 236, 180–187. (doi:10.1016/J.BIOCON.2019.05.029)

Closure of Frog Facility at the Nispero Zoo

In May 2019, the Panama Amphibian Rescue and Conservation Project closed its facility at the Nispero Zoo to streamline and consolidate its captive-breeding operations at a single location in Panama. We are very grateful to the owners of the Nispero Zoo for their support of the amphibian conservation efforts for the past12 years.  This consolidation effort is part of a long-planned strategic move to reduce the costs associated with running two separate facilities. The living collection of animals is now residing at our expanded breeding facility at the Smithsonian Tropical Research Institute in Gamboa.

PARC Gamboa

The Panama Amphibian Rescue and Conservation Project”s Gamboa Facility

As part of the transition process, STRI  transferred custodianship of a portion of the living collection to MiAmbiente who allocated these frogs to the newly formed EVACC foundation. The EVACC foundation will continue to operate independently as a non-profit organization in El Valle de Anton.

Visitors who would like to see the frogs can visit our Fabulous Frogs exhibition at the Punta Culebra Nature Center in Amador, Panama City, or at our small exhibition niche in Gamboa (8:30am – 4pm daily).

Role of Zoos and Corporations in Conserving Panamanian Amphibians

The Panama Amphibian Rescue and Conservation Project was created in 2009 as a partnership between Zoo New England, Cheyenne Mountain Zoo, Houston Zoo, Smithsonian National Zoo, Smithsonian Tropical Research Institute and Defenders of Wildlife to build captive populations of species at risk of extinction from the deadly amphibian chytrid fungus. Together we have built significant capacity for amphibian conservation in Pamama by contributing financial resources, involving zoo staff in field work to collect and care for endangered amphibians, training our Panamanian colleagues in state-of-the art animal care, veterinary care, pedigree management and record-keeping.

Since the project was established, Zoos have provided approximately $300K per year with a total investment of $2.7m in the project that leveraged additional support of $3.9m in grants from Miambiente, First Quantum Minerals (Cobre Panama), USAID, the National Science Foundation, SENACYT, National Geographic, US Fish and Wildlife Service, Mohamed bin Zayed Species Conservation Fund, the Morris Animal foundation and other private donors. First Quantum Minerals (Cobre Panama) has been our largest corporate contributor, providing approximately $450K per year with a total investment of $2.3m in the project.

Milestones

Endangered Frogs
Established founding populations of 12 species of Panama’s most endangered frogs, including Panama’s iconic Panamanian Golden Frog. Reproduced all 12 species in captivity most of them bred in captivity for the first-time ever by project staff.

Priority rescue species PARC

Capacity-Building
Constructed the Gamboa Amphibian Rescue and Conservation Center which is now the largest amphibian conservation breeding center in the world and trained a professional cadre of conservation staff to care for the animals.

PARC Gamboa

Research
Established a world-class research program investigating the frog-killing chytrid fugus and searching for a cure for the disease. Conducting hormone stimulation research to improve captive reproduction. Continued publications of veterinary care, nutrition and husbandry of amphibians to improve knowledge to sustain captive amphibians.

Reintroductions
Conducted the first-ever reintroduction trials of amphibians to learn about the limiting factors how captive frogs transition back into the wild. This data will be used to inform future release strategies using adaptive management principles.

Education
Annual coordination of ‘Festival la Rana Dorada’ activities in Panama City, continued operation of fabulous frogs of Panama exhibition and the integrated informal schools’ curriculum.

Vision for the future
We need to continue to grow the captive amphibian populations to about 300 animals per species with even representation of founder animal genes as the primary assurance colony. This core captive population will safeguard against species’ extinction, and biological banking of gametes will help to ensure against unintended genetic bottlenecks in captivity. Surplus-bred animals will be used for further basic reintroduction research, breeding for disease-resistance, finding a cure for the amphibian chytrid fungus, and basic research that will ultimately be used to reestablish viable wild populations of these species.

Spindly leg syndrome in amphibians

Spindly leg syndrome is the bane of many captive breeding efforts in amphibians, causing much speculation on husbandry boards. This syndrome results in poorly developed limbs of post-metamorphic froglets. The condition has been observed in most of the species we have reared at the Panama Amphibian Rescue and Conservation Project and its a priority for us to resolve from an animal welfare and production perspective.

Atelopus certus post-metamorphs, an example of a SLS frog with poorly developed forelimbs (left) compared with a healthy froglet from the same clutch (right).

Many people had speculated that it was related to a nutritional deficiency in tadpoles or parent frogs, but the new study from the Panama Amphibian Rescue and Conservation Project using Atelopus tadpoles found no connection to diet, but treating the water by reverse osmosis filtration and then reconstituting the minerals was a sure-fire way to reduce the incidence of this syndrome. It is possible that the filtration process removed some factor that caused the syndrome, or that the reconstitution process added minerals such as calcium that were lacking in the original tap water.

One other factor that aggravated SLS was overfeeding of tadpoles, so our future work will manipulate dissolved mineral ratios in future experimental setups. We have been awarded a grant from the Morris Animal Foundation to continue our work on this. Further isolating the factor(s) responsible for causing this syndrome, will help us to improve captive amphibian welfare and allow managers to better control production of amphibians in captive breeding efforts.

Julio working on the second experiment manipulating food quantity, water composition and diet type. Each tank contained 20 full sibling Atelopus glyphus.

Citation: Camperio Ciani JF, Guerrel J, Baitchman E, Diaz R, Evans M, Ibáñez R, et al. (2018) The relationship between spindly leg syndrome incidence and water composition, overfeeding, and diet in newly metamorphosed harlequin frogs (Atelopus spp.). PLoS ONE 13(10): e0204314. https://doi.org/10.1371/journal.pone.0204314 

First Release Trial to Help Pave the Way for Reintroduction Programs for Critically Endangered Frogs

Ninety Limosa harlequin frogs (Atelopus limosus) bred in human care are braving the elements of the wild after Smithsonian scientists sent them out into the Panamanian rainforest as part of their first-ever release trial. The study, led by the Panama Amphibian Rescue and Conservation Project, aims to determine the factors that influence not only whether frogs survive the transition from human care to the wild, but whether they persist and go on to breed.

“Only by understanding the trials and tribulations of a frog’s transition from human care to the wild will we have the information we need to someday develop and implement successful reintroduction programs,” said Brian Gratwicke, international program coordinator for the rescue project and Smithsonian Conservation Biology Institute (SCBI) amphibian conservation biologist. “Although we are not sure whether any of these individual frogs will make it out there, this release trial will give us the knowledge we need to tip the balance in favor of the frogs.”

The Limosa harlequin frogs released at the Mamoní Valley Preserve, have small numbered tags inserted under their skin so that researchers can tell individuals apart. The scientific team also gave each frog an elastomer toe marking that glows under UV light to easily tell this cohort of frogs apart from any future releases. Smithsonian-Mason School of Conservation Ph.D. student Blake Klocke is currently monitoring the frogs daily at the site, collecting information about survivorship, dispersal, behavior and whether the warm micro-climate in the area provides any protection against disease.

The study is also looking at whether a “soft release” boosts the frogs’ ability to survive. Thirty of the newly released frogs spent a month at the site in cages, acclimating to their surroundings and foraging on leaf-litter invertebrates. Eight of these frogs, and eight that were released without the trial period, are wearing miniature radio transmitters that will give Klocke and team a chance to look at differences in survival and persistence between the two groups. The researchers also collected skin bacteria samples from the soft release frogs to measure changes during their transition from captivity to the wild.

“The soft release study allowed us to safely expose captive-bred frogs to a more balanced and varied diet, changing environmental conditions and diverse skin bacteria that can potentially increase their survival in nature,” said Angie Estrada, Ph.D. student at Virginia Tech and a member of the team leading the soft release, which was funded through a Smithsonian Tropical Research Institute (STRI) grant and support from the National Science Foundation. “It allowed us to monitor health and overall body condition of the animals without the risk of losing the frogs right away to a hungry snake.”


Limosa harlequin frogs are especially sensitive to the amphibian chytrid fungus, which has pushed frog species to the brink of extinction primarily in Central America, Australia and the western United States. The Panama Amphibian Rescue and Conservation Project brought a number of individuals into the breeding center between 2008 and 2010 as chytrid swept through their habitat. The Limosa harlequin frogs in this release trial are the first captive-bred generation of the species, and only part of the rescue project’s total insurance population for the species.

“After all the work involved in collecting founder individuals, learning to breed them, raising their tadpoles, producing all their food, and keeping these frogs healthy, the release trial marks a new, exciting stage in this project,” said Roberto Ibáñez, in-country director of the rescue project and STRI scientist. “These captive-bred frogs will now be exposed to their world, where predators and pathogens are ever-present in their environment. Their journey will help provide the key to saving not only their own species, but Panama’s other critically endangered amphibian species.”

The Panama Amphibian Rescue and Conservation Project is a project partnership between the Cheyenne Mountain Zoo, the Houston Zoo, Zoo New England, the SCBI and STRI. This project received additional support from the Friends of the National Zoo, Holohil, The Woodtiger Fund, Mamoni Valley Preserve and Earth Train.

SCBI plays a leading role in the Smithsonian’s global efforts to save species from extinction and train future generations of conservationists. SCBI spearheads research programs at its headquarters in Front Royal, Va., the Smithsonian’s National Zoo in Washington, D.C., and at field research stations and training sites worldwide. SCBI scientists tackle some of today’s most complex conservation challenges by applying and sharing what they learn about animal behavior and reproduction, ecology, genetics, migration and conservation sustainability.

First-Time Breeding of Frog Suggests Hope for Critically Endangered Species

First captive-bred Craugastor evanesco photo by R. Ibanez.

When researchers discovered Craugastor evanesco in the rainforests of Panama, they called it the vanishing robber frog to signify just how quickly the deadly infectious amphibian disease chytridiomycosis had devastated its population. By the time the researchers had published about the new species in 2010, the vanishing robber frog had already disappeared from the park where they had discovered it.

Now, however, the vanishing robber frog may have a fighting chance at a future thanks to the Panama Amphibian Rescue and Conservation Project, which in December became the first program to breed the species in human care. After multiple attempts at breeding the species since 2015, a single pair has now produced one offspring—a success that has encouraged a cautious optimism that the rescue project can replicate the effort.

“A single individual doesn’t make a successful captive breeding program, but demonstrates that it can be done,” says Brian Gratwicke, an amphibian conservation biologist for the Smithsonian Conservation Biology Institute and rescue project international coordinator. “Every journey begins with the first step and this is a critical first step, not just for this species, but potentially for other endangered amphibians with similar reproductive needs.”

The rescue project, a world-class amphibian center run by SCBI and the Smithsonian Tropical Research Institute, currently has a founding population of 20 males and 20 females of the vanishing robber frog. Conservationists collected the frogs from a lowland site in central Panama where the rescue project is working with the support of Minera Panama S.A. to conserve amphibians in the area. But bringing a new and critically endangered species into human care requires learning its own unique husbandry and reproductive needs before it blinks out of existence—sometimes resulting in insurmountable challenges.

“Piecing together a species’ natural history with artificial systems, we can recreate to the best of our abilities an environment where the animals feel comfortable enough to breed,” said Heidi Ross, STRI’s director of El Valle Amphibian Conservation Center, whose expertise and persistence led to the successful first-time breeding of the species. “If we can get them to this point, to become sexually active in our artificial habitat, then we can simply tweak the system based on what worked, what did not work, and what materials are at our disposal. What we arduously do day in and day out is make sure we are providing the basic needs to the animals so that they help us help them from going extinct in the wild.”

The Craugastor group of frogs has a unique reproductive system called direct development—they bury eggs in wet sand and fully formed miniature adults hatch from the eggs. Understanding the frogs’ reproductive cues, special dietary needs and how to emulate the natural environment is essential to successful breeding, Ross says.

“Given the current difficult situation for amphibians in our region, this project represents scientific and biological hope, not only for this species of frog, but also for the recovery of Craugastor evanesco within its distribution range,” said Blanca Araúz, biologist and biodiversity superintendent of Minera Panamá. “As one of the species of interest for our project Cobre Panamá, its reproduction in captivity is important. Because the deadly infectious disease acts fast, experienced scientists can control the infection in these frogs and breed them under better conditions.”

Although scientists are still occasionally finding individual vanishing robber frogs in the field, they have not found a viable, self-sustaining population. Chytridiomycosis has been linked to dramatic population declines of amphibian species worldwide. This particular group of frogs in the Craugastor rugulosus series are particularly susceptible to chytridiomycosis with three closely related species in Panama having disappeared, putting extra pressure on ensuring the survival of Craugastor evanesco.

“It’s all a learning curve,” Gratwicke says. “I’m hopeful that we’ll be able to replicate this breeding event to develop a sustainable breeding program. If we can do that, we’ll be able to get this species back out in the wild as soon as we figure out how to safely do so. If we can do that, it’ll be time to celebrate.”

The Panama Amphibian Rescue and Conservation Project is a partnership between the Houston Zoo, Cheyenne Mountain Zoo, Zoo New England, SCBI and STRI.