In unprecedented effort, more than 40 organizations from 13 countries come together to protect and restore harlequin toads, the jewels of South and Central America, hard hit by a deadly amphibian disease

With the formation of the Atelopus Survival Initiative (ASI)–a new alliance of more than 40 organizations from 13 countries–comes a new day for harlequin toads, the jewels of South and Central America’s forests and creeks and a group of amphibians hardest hit by the deadly chytrid fungus Batrachochytrium dendrobatidis (Bd). 

While amphibian researchers and conservationists have worked for many years to save harlequin toads (which make up the Atelopus genus) and groups of species in individual countries, the ASI is bringing them together for the first time to pool the resources, decades of experience and knowledge necessary to prevent the extinction of the entire genus of harlequin toads across the region where these species still survive. 

“As an incredibly diverse group of amphibians facing a number of threats, harlequin toads require innovative solutions coming from a diverse group of individuals and organizations with different expertise, knowledge and capacities,” said Lina Valencia, ASI founder, co-coordinator of the IUCN SSC Amphibian Specialist Group Atelopus Task Force and Andean countries coordinator for Re:wild, one of the primary ASI conveners. “More than ever before, we need a constellation of champions working together to bring harlequin toads back from the brink of extinction. The ASI underscores the vital need to implement on-the-ground conservation actions that will mitigate the main threats to this beautiful group of amphibians.”

Over the past few decades, many harlequin toad species have suffered severe population declines and extinctions throughout their range. Today, of the 94 harlequin toad species that have been assessed by the IUCN, 83 percent are threatened with extinction, while about 40% of Atelopus species have disappeared from their known homes and have not been seen since the early 2000s, despite great efforts to find them. Four harlequin toad species are already classified as extinct, according to the IUCN Red List of Threatened Species, but this number is likely higher. 

The fungus Batrachochytrium dendrobatidis (Bd) causes the lethal disease chytridiomycosis, which has resulted in amphibian declines all around the world, including in South and Central America, Australia and the western United States. Although Bd may likely be the primary driver of these declines, a number of other threats are exacerbating the precipitous drops in population numbers. This includes habit destruction and degradation (as the result of animal agriculture, logging, mining and infrastructure development), the introduction of invasive species such as the rainbow trout that prey on harlequin toad tadpoles, pollution, illegal collection for the pet trade, and the effects of climate change.

The ASI and its members, including governments, local communities and Indigenous peoples, will collaboratively address each of these threats–and new ones as they arise–across the genus’s full range, taking into account the social, political and cultural realities of each of the 11 countries where harlequin toads are found. 

“With their beautiful songs and unique lifestyles, amphibians are among the most extraordinary animals on Earth, and among them, harlequin toads stand out for their amazing colors,” said Luis Fernando Marin da Fonte, coordinator of the ASI and director of partnerships and communications for the Amphibian Survival Alliance. “But these colorful and delicate jewels are becoming increasingly rarer. Harlequin toads must be protected not only because of their beauty and uniqueness, but also because of their intrinsic value and biological, ecological and even cultural importance.”

The initiative’s newly developed Harlequin Toad (Atelopus) Conservation Action Plan (HarleCAP) provides the roadmap for conserving and restoring harlequin toads as a genus and their habitat. The action plan’s goals, which ASI aims to achieve by 2041 (the 200th anniversary of the description of the genus Atelopus), include:

  • developing and implementing innovative methods to mitigate chytrid’s impacts on harlequin toad populations and better understanding why some species are less susceptible to the effects of chytrid;
  • protecting and restoring harlequin toads’ forests and watersheds;
  • creating and maintaining conservation breeding programs;
  • searching for species that are lost to science and filling in other gaps in scientific knowledge about harlequin toads;
  • sharing stories that will transform harlequin toads into symbols of hope for the region and the world and a flagship for conservation success, and demonstrate a commitment to the conservation of harlequin toads; 
  • ensuring the Atelopus conservation network has the technical, logistical, and financial support to secure the long-term conservation of harlequin toads

“The establishment of collaborative initiatives at the international and regional level is essential to coordinate efforts and obtain tangible results that have an efficient and real impact on the conservation of an endangered species,” said Gina Della Togna of the Universidad Interamericana de Panamá, Panamá. “The Atelopus Survival Initiative is a concrete example, which not only aims to conserve one species, but an entire genus, perhaps the most threatened by the global amphibian extinction crisis.”

Harlequin toads are found from Costa Rica in the north to Bolivia in the south, and Ecuador in the west and French Guiana to the east. They are known as the jewels of South and Central America in part because of their beautiful and varied colors, which range from orange, green, yellow, brown, black, red, and sometimes even purple. They are celebrated in a number of Latin American cultures, including Indigenous cultures, and across entire countries, like in Panama, where the national animal is the Panamanian golden toad.

Like other amphibians, harlequin toads support healthy ecosystems. Their tadpoles depend on clean water and, because of this, the presence of harlequin toads indicates better quality water in an ecosystem, while their decline or absence is often the first sign of an ecosystem in trouble. 

“Protecting and restoring harlequin toads and their habitats will also benefit the species that share the ecosystems in which they live and that provide water to tens of millions of people, and ultimately all life on Earth,” Valencia said. “And we’re hoping that the ASI will be a successful model that conservationists can emulate for other groups of threatened species.”

 The Atelopus Survival Initiative includes national and international conservation groups, zoos, captive breeding centers, academic institutions, governments and local communities. Its current members represent the following organizations: Amphibian Ark, Amphibian Survival Alliance, Asociación Pro Fauna Silvestre  – Ayacucho, Bioparque Municipal Vesty Pakos, Bolivian Amphibian Initiative, Centre National de la Recherche Scientifique, Centro de Conservación de Anfibios AMARU, Centro Jambatu de Investigación y Conservación de Anfibios/Fundación Jambatu, CORBIDI, DoTS, El Valle Amphibian Conservation Center Foundation, Facultad Latinoamericana de Ciencias Sociales, Florida International University, Fort Worth Zoo, Fundación Atelopus, Fundación Zoológica de Cali, Universidad del Tolima (GHEE), Grupo de Trabajo Atelopus Venezuela, Image Conservation, Instituto Nacional de Pesquisas da Amazônia, Instituto Venezolano de, Investigaciones Científicas, Ministerio del Ambiente de Perú, MUBI (Museo de Biodiversidad del Perú), Parque Explora, Parque Nacional Natural Puracé, Photo Wildlife Tours, Pontificia Universidad Católica del Ecuador, Pontificia Universidad Javeriana, Re:wild, San Diego State University, Smithsonian Tropical Research Institute, Trier University, Universidad de Antioquia, Universidad de Costa Rica, Universidad de los Andes, Universidad del Tolima, Universidad del Magdalena, Universidade Federal do Pará, Universidad Nacional, Universidad Interamericana de Panamá, Universidad Nacional de Colombia, Universidad San Francisco de Quito, Universidade Estadual de Campinas, Universidade Federal do Oeste do Pará, University of Nevada, Reno, University of Notre Dame, University of Pittsburgh, WCS (Wildlife Conservation Society), WCS Colombia, Zoológico Cuenca Bioparque Amaru

Role of Zoos and Corporations in Conserving Panamanian Amphibians

The Panama Amphibian Rescue and Conservation Project was created in 2009 as a partnership between Zoo New England, Cheyenne Mountain Zoo, Houston Zoo, Smithsonian National Zoo, Smithsonian Tropical Research Institute and Defenders of Wildlife to build captive populations of species at risk of extinction from the deadly amphibian chytrid fungus. Together we have built significant capacity for amphibian conservation in Pamama by contributing financial resources, involving zoo staff in field work to collect and care for endangered amphibians, training our Panamanian colleagues in state-of-the art animal care, veterinary care, pedigree management and record-keeping.

Since the project was established, Zoos have provided approximately $300K per year with a total investment of $2.7m in the project that leveraged additional support of $3.9m in grants from Miambiente, First Quantum Minerals (Cobre Panama), USAID, the National Science Foundation, SENACYT, National Geographic, US Fish and Wildlife Service, Mohamed bin Zayed Species Conservation Fund, the Morris Animal foundation and other private donors. First Quantum Minerals (Cobre Panama) has been our largest corporate contributor, providing approximately $450K per year with a total investment of $2.3m in the project.

Milestones

Endangered Frogs
Established founding populations of 12 species of Panama’s most endangered frogs, including Panama’s iconic Panamanian Golden Frog. Reproduced all 12 species in captivity most of them bred in captivity for the first-time ever by project staff.

Priority rescue species PARC

Capacity-Building
Constructed the Gamboa Amphibian Rescue and Conservation Center which is now the largest amphibian conservation breeding center in the world and trained a professional cadre of conservation staff to care for the animals.

PARC Gamboa

Research
Established a world-class research program investigating the frog-killing chytrid fugus and searching for a cure for the disease. Conducting hormone stimulation research to improve captive reproduction. Continued publications of veterinary care, nutrition and husbandry of amphibians to improve knowledge to sustain captive amphibians.

Reintroductions
Conducted the first-ever reintroduction trials of amphibians to learn about the limiting factors how captive frogs transition back into the wild. This data will be used to inform future release strategies using adaptive management principles.

Education
Annual coordination of ‘Festival la Rana Dorada’ activities in Panama City, continued operation of fabulous frogs of Panama exhibition and the integrated informal schools’ curriculum.

Vision for the future
We need to continue to grow the captive amphibian populations to about 300 animals per species with even representation of founder animal genes as the primary assurance colony. This core captive population will safeguard against species’ extinction, and biological banking of gametes will help to ensure against unintended genetic bottlenecks in captivity. Surplus-bred animals will be used for further basic reintroduction research, breeding for disease-resistance, finding a cure for the amphibian chytrid fungus, and basic research that will ultimately be used to reestablish viable wild populations of these species.

Defying disease: Panama’s frogs are fighting back

Many infectious diseases can fade away after initial outbreaks. Bubonic plague, cholera, and influenza are examples from recent human history. The same phenomenon occurs for wildlife diseases as well. How does this happen? One popular explanation is that the pathogen evolves to become less deadly, so that it doesn’t completely wipe out its hosts, ensuring pathogen survival. While this scenario does sometimes play out, we know that there are other reasons why the severity of diseases can change over time.

Cori Richards and Jamie Voyles

For amphibians, we’ve known about a highly lethal disease called “chytridiomycosis” since the 1990s. This disease was especially devastating in Central America, where it may have wiped out entire species. In this study, we made the exciting discovery that some amphibian species – frogs that were thought to be extinct – are persisting, and even recovering, after lethal disease outbreaks. We wanted to understand how it was happening. Was it a change in the pathogen, the frogs, or both?

To answer these questions, we did two things. To begin with, we surveyed frogs in Panama before and after the disease outbreak. In addition, we collected samples of the pathogen at multiple time points: during initial outbreaks and ~10 years later. We found that nearly a decade after the outbreak, the pathogen was just as deadly. However, the frogs are surviving and have better defenses against it. Panama’s frogs are fighting back! Understanding how amphibian communities are recovering after this disease outbreak is important multiple reasons. First, resolving how this works will help us develop more informed conservation strategies to protect amphibians from disease-induced extinctions. Second, clarifying how disease outbreaks subside will help us predict, and respond to, other emerging pathogens in plants, wildlife, and in humans. These goals are increasingly important in a time when rapid globalization has increased the introduction of pathogens to naïve host populations.

Atelopus varius is one species that appears to have evolved antifungal skin secretions

by Jamie Voyles and Cori Richards-Zawacki

Read the paper: Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation BY JAMIE VOYLES, DOUGLAS C. WOODHAMS, VERONICA SAENZ, ALLISON Q. BYRNE, RACHEL PEREZ, GABRIELA RIOS-SOTELO, MASON J. RYAN, MOLLY C. BLETZ, FLORENCE ANN SOBELL, SHAWNA MCLETCHIE, LAURA REINERT, ERICA BREE ROSENBLUM, LOUISE A. ROLLINS-SMITH, ROBERTO IBÁÑEZ, JULIE M. RAY, EDGARDO J. GRIFFITH, HEIDI ROSS, CORINNE L. RICHARDS-ZAWACKI SCIENCE 30 MAR 2018 : 1517-1519

Encouraging Study Suggests Moratorium on Salamander Imports Could Be Helpful in Preventing Spread of Disease

A recent rule put in place in 2016, restricting the international import of 201 salamander species into the United States, aimed to prevent the newly discovered deadly salamander fungal disease, Batrachochytrium salamandrivorans (Bsal), from entering the country. In a new study published Oct. 13 in Scientific Reports, Smithsonian Conservation Biology Institute scientists reveal that the moratorium seemingly has a chance to do its job effectively.

Researchers swabbing an emperor newt at the Smithsonian’s National Zoo. Emperor newts belong to a genus of newts from Asia that are currently subjected to the U.S. Fish and Wildlife Service’s moratorium on salamander imports because of the risk that they may carry the deadly salamander fungal disease, Batrachochytrium salamandrivorans (Bsal).

“When the moratorium went into effect, we did not know if Bsal was already in the United States in pet salamanders and whether we were closing the barn door after the horse had already escaped,” said Brian Gratwicke, SCBI amphibian conservation biologist and paper senior author. “Our study did not find the pathogen in pet salamander populations in the United States, which is good news for native salamanders, especially in the Appalachian region—a salamander biodiversity hotspot. It also means that we must continue to be vigilant and prevent the disease from entering the country.”

The study marks the first general survey for Bsal in pet salamanders in the United States. The researchers worked with the Amphibian Survival Alliance to mail out sampling kits to salamander pet owners. In return, the team received skin swab samples from 639 salamanders belonging to 65 species, many of which are potential carriers of Bsal. None of the samples came back with evidence of Bsal, according to tests conducted in SCBI’s Center for Conservation Genomics.

“Working with the pet-hobbyist community on this project gave us a chance to alert this key group to a potential problem and was critical in determining whether Bsal has been imported into the United States,” said Blake Klocke, George Mason University’s Department of Environmental Science and Policy doctoral student, researching with SCBI and lead author on the study. “We hope that they will continue to be watchdogs for signs of Bsal and will implement testing and biosecurity protocols into their regular routine to prevent the possible spread of disease in the future.”

Bsal was discovered after populations of fire salamanders in the Netherlands experienced catastrophic declines from the disease, which was likely introduced from Asia, the source of most international exports of salamander species for the pet trade. Bsal is similar to a frog-killing fungus called Batrachochytrium dendrobatidis (Bd), which has been a major driver of global amphibian declines and extinctions. Bsal has been detected in the wild in the Netherlands, Belgium, Germany and Vietnam, as well as in in captive individuals in the United Kingdom and Germany.

The Lacey Act, which includes the 201 species of salamanders the U.S. Fish and Wildlife Service list as “injurious wildlife” (those most susceptible to Bsal or likely to spread Bsal) limits both the import of these animals from other countries and their transfer over state lines. According to the paper, the Lacey Act decision reduced the number of salamanders imported to the United States from 2015 to 2016 by 98.4 percent.

The United States is home to 190 native species of salamanders. The Scientific Reports study complements SCBI’s ongoing tests of salamanders in the wild, which have also come back negative for Bsal. SCBI will continue to screen for the disease in the wild and work with collaborators on developing methods to manage the spread of Bsal should it be introduced into the wild.

“Salamanders play a key role in maintaining the health of our forests and may even help regulate climate,” said Carly Muletz-Wolz, SCBI research scientist and paper co-author. “If Bsal were to hitch a ride to the eastern United States specifically, where salamanders are particularly abundant, it could spread quickly and result in catastrophic changes to the ecosystems. It is imperative that we do all we can to prevent the introduction of Bsal into the country and that we continue to monitor our wild populations so we can take swift action if needed.”

The paper’s additional authors are Matthew Becker and Robert Fleischer, SCBI; James Lewis, Rainforest Trust; and Larry Rockwood and A. Alonso Aguirre, George Mason University.

https://www.nature.com/articles/s41598-017-13500-2

Earth optimism: Frogs

What’s Working in Conservation

The global conservation movement has reached a turning point. We have documented the fast pace of habitat loss, the growing number of endangered and extinct species, and the increasing speed of global climate change. Yet while the seriousness of these threats cannot be denied, there are a growing number of examples of improvements in the health of species and ecosystems, along with benefits to human well-being, thanks to our conservation actions. Earth Optimism is a global initiative that celebrates a change in focus from problem to solution, from a sense of loss to one of hope, in the dialogue about conservation and sustainability.

The Smithsonian will host an Earth Optimism Summit in Washington DC April 21-23, 2017
Please register if you are coming in person or stream the presentations online here: https://earthoptimism.si.edu/calendar/summit Sunday is a free public day.

Dr Brian Gratwicke will present the Panama Amphibian Rescue and Conservation Project on Saturday April 22 5:15pm on the panel Science on the Edge

More Good Reasons Not to Lick a Toad

A New Review of Chemicals Produced by the Toad Family, Bufonidae

Cane toad (Rhinella marinus)

As human diseases become alarmingly antibiotic resistant, identification of new pharmaceuticals is critical. The cane toad and other members of the Bufonidae family produce substances widely used in traditional folk medicine, but endangered family members, like Panama’s golden frog, Atelopus zeteki, may disappear before revealing their secrets. Smithsonian scientists and colleagues catalog the known chemicals produced by this amphibian family in the Journal of Ethnopharmacology highlighting this largely-unexplored potential for discovery.

“We’re slowly learning to breed members of this amphibian family decimated by the chytrid fungal disease,” said Roberto Ibañez, Panamanian staff scientist at the Smithsonian Tropical Research Institute (STRI) and in-country director of the Panama Amphibian Conservation and Rescue (PARC) project. “That’s buying us time to understand what kind of chemicals they produce, but it’s likely that animals in their natural habitats produce an even wider range of compounds.”

15 of 47 frog and toad species used in traditional medicine belong to the family Bufonidae. For millennia, secretions from their skin and from glands near their ears called parotid glands, as well as from their bones and muscle tissues have been used as remedies for infections, bites, cancer, heart disorders, hemorrhages, allergies, inflammation, pain and even AIDS.

Toxins of two common Asian toad species, Bufo gargarizans and Duttaphrynus melanostictus, produce the anticancer remedies known as Chan Su and Senso in China and Japan, respectively. Another preparation used to treat cancer and hepatitis, Huachansu or Cinobufacini, is regulated by the Chinese State Food and Drug Administration. In Brazil, the inner organs of the toad, Rhinella schneideri, are applied to horses to treat the parasite Habronema muscae. In Spain, extract from the toad Bufo bufo is used to treat hoof rot in livestock. In China, North and South Korea, ranchers use the meat of Bufo gargarizans to treat rinderpest.

Only a small proportion of the more than 580 species in the Bufonidae family have been screened by scientists. “In Panama, not only do we have access to an amazing diversity of amphibian species,” said Marcelino Gutiérrez, investigator at the Center for Biodiversity and Drug Discovery at Panama’s state research institute, Instituto de Investigaciones Cientificas y Servicios de Alta Tecnologia (INDICASAT),  “we’re developing new mass spectrometry and nuclear magnetic resonance spectroscopy techniques to make it easier and cheaper to elucidate the chemical structures of the alkaloids, steroids, peptides and proteins produced by these animals. We work closely with herpetologists so as not to further threaten populations of these species in the wild.” Their efforts to catalog chemicals produced by the Bufonidae included researchers from the University of Panama, Vanderbilt University, in Tennessee, U.S.A. and Acharya Nagarjuna University in Guntur, India.

Most of the chemicals produced by frogs and toads protect them against predators. Atelopus varius contains tetrodototoxin. Chiriquitoxin is found in Atelopus limosus, one of the first species that researches succeeded in breeding in captivity as well as in Atelopus glyphus and Atelopus chiriquiensis. An atelopidtoxin (zetekitoxin) from the Panamanian golden frog, Atelopus zeteki, appears to consist of two toxins. Toxins from a single frog skin can kill 130-1000 mice.

The golden frog, A. zeteki, Panama’s national frog, is the only species of the genus Atelopus that secretes zetekitoxins. Threatened by the chytrid fungal disease that infects the skin and causes heart attacks, with collection for the exotic pet trade and by habitat destruction, if golden frogs were to disappear, they would take this potentially valuable chemical with them.

More than 30 percent of amphibians in the world are in decline. Racing to stay ahead of the wave of disease spreading across Central America, Panama is leading the way in conservation efforts. The Smithsonian’s Panama Amphibian Rescue and Conservation project (PARC) identified several Atelopus species in danger of extinction, and are learning how to create the conditions needed to breed them in captivity. Not only do animal caretakers at their facilities in Gamboa and El Valle, Panama experiment to discover what the frogs eat, they also recreate the proper environment the entire frog life-cycle: egg laying, egg hatching and tadpole survival, to successfully breed Atelopus. Each species has unique requirements, making it an expensive challenge to create this Noah’s ark for amphibians.

The chemical building blocks amphibians use to create toxic compounds come from sources including their diet, skin glands or symbiotic microorganisms. Toads in the genus Melanophryniscus sequester lipophilic alkaloids from their complex diet consisting of mites and ants. Researchers found that toxins found in a wild-caught species of Atelopus could not be isolated from frogs raised in captivity: another reason to conserve frog habitat and to begin to explore the possibility of releasing frogs bred in captivity back into the wild.

Learn more about amphibians by visiting the PARC blog and the Panama’s Fabulous Frogs exhibit at the Smithsonian’s Culebra Point Nature Center in Panama.

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a part of the Smithsonian Institution. The Institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website. Promo video.

# # #

Rodriguez, Candelario, Rollins-Smith, Louise, Ibanez, Roberto, Durant-Archibold, Armando, Gutiérrez, Marcelino. 2016. Toxins and pharmacologically active compounds from species of the family Bufonidae (Amphibia, Anura). Journal of Ethnopharmacology, doi:10.1016/j.jep.2016.12.021

Puerto Rico’s Dia del Coqui

Common_CoquíFor five years, I have worked as the staff herpetologist at Las Casas de la Selva, a sustainable forestry project in Puerto Rico. I’ve also had the privilege of spending five months in Panama; some of that time was spent working with PARC and I have noticed many similarities between Puerto Rico and Panama. Specifically, I have noticed how each country has a frog as a national and cultural symbol.

In Panama, everyone knows of the Golden Frog (Atelopus zeteki), and when I was studying the folklore of Panama, I heard old stories about how the frog was good luck, and that people used to believe that it turned to gold when it died. Nowadays, the Golden Frog is a symbol of Panama itself, and what it means to be Panamanian. Images of the Golden Frog adorn everything from lottery tickets to t-shirts to coffee mugs. Some of my friends in Panama have even gone so far as to get Golden Frog tattoos. And each year, thousands of people celebrate Golden Frog Day.

As an island, Puerto Rico has very few species of frogs, and 16 of the 18 native species belong to the genus Eleutherodactylus. This genus is referred to collectively as “Coquis”, although only two species make the distinctive “Ko-Kee” mating call that makes nighttime in Puerto Rico such a noisy affair. Of the 16 species of Coquis, 13 are listed by the IUCN as either Vulnerable, Endangered, or Critically Endangered. As with the Golden Frog in Panama, Coquis are a symbol of everything Puerto Rican. Mainland-born Puerto Ricans who return to the island respond to challenges about their Puerto Rican “authenticity” used to respond, “I’m as Puerto Rican as the Coqui”. Images of the Coqui show up on artistic murals, tourist kitch, and tattoos; there is even a “Coqui” brand of coffee and a “Coqui” car dealership!

But we are missing something in Puerto Rico- we have no equivalent to the “Dia de Rana Dorada”. After my time at PARC, including my opportunity in 2012 to help Angie Estrada, Jorge Guerrel, Ligo Diaz, and the rest of the staff plan and execute educational activities at the Summit Zoo, I decided to take the spirit of “Dia de Rana Dorada” back to Puerto Rico with me. The idea has been well-received, and the first “Dia del Coqui” will be a weekend-long festival from September 26th-28th, 2014. It will be held at the Jardin Botanical y Cultural William Miranda Marin in the centrally-located city of Caguas. Already, artisans, scientists, musicians, university students, historians, and public-works officials are coming together to make this event a success.

The intention of Dia del Coqui is to be a cultural celebration, but also an important learning tool to help the people of Puerto Rico know that the frogs that they have always shared the island with are in need of conservation. We hope that Dia del Coqui becomes a cultural mainstay in Puerto Rico, akin to Dia de Rana Dorada in Panama.

by  Norman Greenhawk  greenhawk81@gmail.com  www.facebook.com/diadelcoqui